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ata Analytics Section

The Section is co-led by the Federal
Emergency Management Agency (FEMA) and
the Assistant Secretary for Preparedness and
Response (ASPR), and includes personnel
from the United States Army Corps of

--Engineers (UASCE)

The FEMA/ASPR Region 1 Data Analytics
Section was established to support the

Regional Response Coordination Center
(RRCC) COVID-19 response efforts

The Section provides modeling and analysis
to support and inform decisionmakers on the
distribution of resources, fatality management,
the Reopening of America efforts, and second
wave scenarios
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systems that communities rely on uS Army Corps

Outline
Team: USACE/FEMA/HHS - science of resilience, framing the problem,

application to COVID in FEMA Region 1 and worldwide.

Science of Resilience: Historical perspectives (Venice), resilience quantification
using metrics-based (Resilience Matrix) and model-based (Network Science)
approaches.

Application Example — Financial Implication of Lack of Resilience

Support to FEMA Region 1: Integration epidemiological model (ERDC-SEIR)
with community resource modeling and policy evaluations.

Conclusion: Resilience based approaches and economic analyses need to be
Integrated to assure both efficiency and resilience in operation of c

of Engineers. [EXTTT]!
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System Thinking

What Makes Complex
Systems
(Communities)
Susceptible to Threat?

System | . |
Suprasystem | ‘Resilience |

Disruption
Sub-system)*/,

— Minimize

System Performance

After Linkov and Trump, 2019
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Moving Towards Resilience

System Consequences
Threat Vulnerability bt e

- Uncontrolled Spread Release -Ventilators

- Human Health
- Business Disruption

Risk

of Disease - PPE
- Mortuary Services

- Infrastructure
Failure

Critical Function

Loss of Functionality

\ .

We are here

System
Response

Absorb Recover Adapt =p

Prepare

Trump, B., et al (2020). Biosecurity Demands Resilience.

()

~ Environmental Science & Technology, 54, 4706-4708 of Engineers =
TN mamee U1 L LN 1N S O v " ; T e




Measuring Resilience in Different Systems

Metrics Based | — > l Model Based l
Aexandes Kol

Individual Metri Process ~— Cyber Resilience
FeimEviEeal St Statistical/ Baysian — of Systems and
L slniltens Networks — Networks
— Dashboards Game- Theoretical —
— Decision Analytics Simulations/ Agent Based —
After Linkov and Kott, 2019 ‘?}T
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PREPARE

\

ABSORB

RECOVER

System Domains

After Linkov et al. (2013)
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Disruptive I':‘vent Stages

UsS Army Corps
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Assessment using Decision Maker Values

Selection of Alternatives /——\ Comparative Assessment

me > A
S N I I\
Previous Cycle  »  Plan/Prepare > Abworb > Recove > Adapt
““““““ o 1/ 7y 1/
Physical /
S
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Cognitive V

Alt.2

Baseline Alt. 1 Alt. 2 +

Alt. 3
Social v 5 5555 SS
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Cost

Figure 5: Comparative Assessment of Resilience-Enhancing Alternatives

Use developed resilience metrics to After Fox-Lent et al. (2015)

comparatively assess the costs and
benefits of different courses of action USArmy Corps
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Network-based Resmence Theory?
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After Ganin et al., 2016

R = f(IV,L CE)
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Poor Efficiency:

System cannot not accommodate a
large volume of commuters driving at
the same time.

Traffic congestions are predictable and
are typically of moderate level.

Lack of Resilience:

System cannot recover from adverse
events
(car accidents, natural disasters)

Traffic disruptions are not predictable
and of variable scale.



TranSight

Construction
Data ngration
Finance

Project-Specific

Economjc Results

FA’F Engine

Scenario 1 N
“Baseline” Transportation FoolD d aria?:ull:g

Model uel Deman 1Y

. Emissions T o
Random ) - Safety ransportation Cos
Network ‘ DELAYS | Operating Costs Matrix

' Value of Time

Disruptions
e

DELAYS J

Model structure of TranSight
Scenario 2

Interested in:
Resilience 1. Temporal Patterns of Disruptions
Model 2. Compare Multiple Cities
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Build networks comprise of road links and

-
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Transportation Network Model:

A Google Map typical traffic at 8am
B, C Modeled delay per km (min):

<1.2

1.2-12
m—— Highways
[ Approximating urban area boundary polygon

12-24 we— > 24
Other roads

intersection nodes
Assign travelers and routes

Calculate free flow travel times and actual travel

times

4) Calculate normal delay
5) Calibrate model to data
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Modeled Annual Delays, hours
N
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Transportation
Networks in 40 Cities

Links deruption annual additional delays, hundreds hours

SCIENCE ADVANCES | RESEARCH ARTICLE

NETWORK SCIENCE

Resilience and efficiency in transportation networks

Alexander A. Ganin,"* Maksim Kitsak,®> Dayton Marchese,” Jeffrey M. Keisler,*
Thomas Seager,” Igor Linkov*
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Resilience vs Efficiency at 5% disruption
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SCIENCE ADVANCES | RESEARCH ARTICLE

NETWORK SCIENCE 2017

Resilience and efficiency in transportation networks

Alexander A. Ganin,’? Maksim Kitsak,> Dayton Marchese,? Jeffrey M. Keisler,*
Thomas Seager,’ Igor Linkov?*



Impact of Cyber Attack on Transportation Network
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Alexander A. Ganin™", Avi C. Mersky”, Andrew S. Jin‘, Maksim Kitsak,
Jeffrey M. Keisler®, Igor Linkov®"
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Increase Iin Transportation Costs

Fraction of Affected Roadways (Network Links), o

1% 2% 3% 4% 5%

E Atlanta 4% 10% 16% 23% 33%
:., Detroit 3% 6% 9% 14%% 1994

E Houston 5% 11% 16% 249% 32%

—E' Jacksonville 7% 13% 22% 33% 44%
E Los Angeles 1% 3% 5% 7% 9%

I': Miami 4% 9% 13% 18% 23%
'g Orlando 4% 9% 14% 20% 26%
E_' San Francisco Q%% 20% 34% 43% 51%

_E Seattle 3% 6% 9% 13% 17%

= Tampa 6% 2% 20% 26% 37%

M TRANSPORTATION
RESEARCH

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Lack of resilience in transportation networks: Economic
implications R
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Resilience in Big Cities

Resilience
AGDP) (x107%%)
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After Kurth et al., 2020
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Resilience in “Rich” Cities
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Managing Resilience is Different than
Efficiency

Current
) System .
Design to Design to
Maximize Maximize
Efficiency Resilience
Efficiency Resilience
* the ability to move quickly when the * the ability to limit delays from
network is functioning as designed network component failures
* cost effectively improved by * bestimproved by provide
increasing capacity on existing and alternative route capacity when

highly utilized right of ways failure does occur
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Resilience and Epidemic Spread

The resilience is defined as a competition process between commuters and =

disease spreading in a metapopulation system. Three Behavioral Disease models

metapopulation subopopulations individuals - stage of the
disease

1. Local Information

pop igration
) O ® 2. Global Information
O

% 3. Local, belief-based spread of the fear =
s of the disease j
o1 9si
®F

SCIENTIFIC REPg}RTS

OFEN Resilience management during

large-scale epidemic outbreaks
After Massaro et al, 2018 Emanuele Massaro(m %3 Alexander Ganin(®'4, Micola Perra®®7, Igor Linkov® &

. AlessandroVespignani®™*
teceived: 26 September 2017 Assessing and managing the impact of large-scale epidermics considering only the individual risk
hocepied: 5 January 2018 : and severity of the disease is exceadingly difficult and could be extremely expensive. Economic
*ublislwed ealine: 30 January 2018 | oonseguences, infrastrecture and service disruption, as well as the recovery speed, are just a few of the
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From Massaro, Linkov et al (2018)
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Supporting FEMA Region 1:

Translate State-specific COVID-19 and socio-political realities into
an actionable plan consistent with federal guidelines.

New Cases of COVID-19 for MA
As of 04/22/2020
Sourees ASPR/COC

e - = e

GUIDELIMNES

OPENING UP

AMERICA AGAIN

wiflE CDC

There will be future public health challenges
related to secondary waves

Modeling and analytical tools should continue
to be developed

Institutions

Population Health

WARNING
SIGNS

Epidemiology

Gating | Phase 1 Phase 2| Phase 3
TIME
| Institutions

Population Health

Epidemiology

MANAGEMENT
ALTERNATIVES



How Can This Be Achieved?

- Rate of Spread
- Incidence

. . ’ - idemiologica - Prevalence
« Modeling Epidemics in New RN Foo S e
England

Regionally-adjusted
COVID-19,
Outcomes:

 New England Health and
Institutional Requirements

« Modeling Recovery and 29 (@sisiieios Population Health
Wave

- Hospital/ ICU beds\_/ - Age Distribution

- Medical Personnel - Comorbidities

- Ventilators - Den.\ographncs
- Sociology
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ERDC SEIR Model

Adapted SEIR approach - Splits
Infected population into “reporte
and “unreported

Dynamics statistically combined
with observations and SME
knowledge

Parameters updated daily with
new data

Model parameters change with
varying social distancing
restrictions

Prediction uncertainty from
unconstrained parameters is
characterized
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300 4
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New Cases Reported
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Isolated
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Susceptible »| Exposed
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Alternative 1

Second Wave
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FEMA R1-Tool:

Translating Model into Institutional Requirements

Maine ERDC-SEIR COVID-19 Forecast D/07/2020
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60
w [ ]
Ss0 . ",
-l‘E' [ ]
240 . * e o @ =
.g [ RIS N [}
o
2 30
g 20
3 10
()
IS S S) ) o I I\
\x\q’& *\\W& D\,@w %\'9% Q:\égb fa\@w ’SSSL
A\ U\ A\ VN o
Modeled o Observed
Beds Needed for COVID Patients
week T MA ME MH Rl VT
3/18/2020 72 155 17 12 10 10
3/25/2020 408 859 3 a0 43 36
4/1/2020 BO4 1,658 73 i
4/8/2020 2510 84 233
4/15/2020 9B
4/22/3020 44 113 26
4392020 41 128 10
sfef2020] 1,061 38 145 408 4
5/13/2020 657 2,403 15 161 213 2
520/ 2020 369 1,607 33 176 95 1
8f27/ 2020 196 oo 20 180 40 1]
6/3/2020 101 LBY 28 199 17 i ]
6/10/2020 51 337 25 7 1]
6/17/2020 26 190 23 3 ]

i week

i

Al

A0

A0

1060

2500

Curnulative Cases
Reparted
g8 8. 85 8 3

\/

)

2
Availabl&rematiﬂn Capacity

— A

= ME

— MH
: —_—Fl
—_—T

3f4 3118 471 4015 4079 513 5/77 610 624 TR 727

— Frrecast ¢ DEesrvaton | 020
F |}.15§
ERDC-SEIR | ™
.05 E
F OO0
m— Prrecest - mxrrr.mll 0.008
.00 E
£
[ oo <
£
b OO0
CONVENTIONAL BURN RATES
N95s or other respirators
weaek cT MA ME NH RI VT
5/6/2020| 146,576 | 471,367 6,025 22,265 53,767 469
CONTINGENCY BURN RATES
N95s or other respirators
week cT MA ME NH Rl vT
5/6/2020 67,569 ( 219,276 2823 10,515 24 627 211
N95s or other respirators
week cT MA ME NH RI vT
5/6/2020| 12,400 39,703 506 1,862 4562 40




Moving Forward

Environment Systems and Decisions
https://doi.org/10.1007/510669-020-09776-X

SHORT COMMUNICATION

Bouncing forward: a resilience approach to dealing with COVID-19
and future systemic shocks

William Hynes' - Benjamin Trump' - Patrick Love' - Igor Linkov’

-

1.) Recovery and Building Resilience in the Local Economy

Preserve and Recover from Disruptions to Local Economies

2.] Household Resilience

Bolster consumer/household resilience to shock

3.) Company/Business Resilience

Prevent Company Bankruptcies, Layoffs, and/or Shutdown While Complying With Pandemic Response

Requireme nt5.|
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Civilizational Ups and Downs: Thinking in Systems and
Resilience

Improve system with
incremental
adaptationto
changing conditions

Jourmal of Public Health | Vol, 39, No 2 pp. 234-257 | doil0.1093, pebmed/Sdatdd | Advence Access Publicaton May 25, 2006

Perspectives

Disease epidemics: lessons for resilience in an increasingly
connected world

S.N. DeWitte!, M.H. Kurth?, C.R. Allen3, I. Linkov?
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d Stressors trigger
| rapid decline
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Why
Resilience?
Diminishing

Returns of
Risk-Based
Approaches

Risk Value

Accepted Pracfice

Most Cost Effective

Best Achievable

Absolute Minimum

Most Risk-Averse

Cost of Reducing Risk
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